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Spike Phase Locking in CA1 Pyramidal Neurons Depends on
Background Conductance and Firing Rate
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Oscillatory activity in neuronal networks correlates with different behavioral states throughout the nervous system, and the frequency–
response characteristics of individual neurons are believed to be critical for network oscillations. Recent in vivo studies suggest that
neurons experience periods of high membrane conductance, and that action potentials are often driven by membrane potential fluctu-
ations in the living animal. To investigate the frequency–response characteristics of CA1 pyramidal neurons in the presence of high
conductance and voltage fluctuations, we performed dynamic-clamp experiments in rat hippocampal brain slices. We drove neurons
with noisy stimuli that included a sinusoidal component ranging, in different trials, from 0.1 to 500 Hz. In subsequent data analysis, we
determined action potential phase-locking profiles with respect to background conductance, average firing rate, and frequency of the
sinusoidal component. We found that background conductance and firing rate qualitatively change the phase-locking profiles of CA1
pyramidal neurons versus frequency. In particular, higher average spiking rates promoted bandpass profiles, and the high-conductance
state promoted phase-locking at frequencies well above what would be predicted from changes in the membrane time constant. Mecha-
nistically, spike rate adaptation and frequency resonance in the spike-generating mechanism are implicated in shaping the different
phase-locking profiles. Our results demonstrate that CA1 pyramidal cells can actively change their synchronization properties in re-
sponse to global changes in activity associated with different behavioral states.

Introduction
Rhythmic activity in a wide range of frequencies has been ob-
served in the CNS during different behavioral states (Engel et al.,
2001; Buzsáki and Draguhn, 2004; Steriade, 2006). In rodents,
hippocampal theta oscillations coincide with periods of active
exploration and rapid eye movement sleep, and are involved in
spatial information processing and memory formation (Buzsáki,
2002; Andersen et al., 2007). CA1 pyramidal neurons, which
project the hippocampal output to the entorhinal cortex (Ander-
sen et al., 2007), have a preferential theta phase of firing in vivo
(Klausberger et al., 2003; Harvey et al., 2009). However, the net-
work and cellular mechanisms involved in the generation and
maintenance of hippocampal theta oscillations are still unclear.
In particular, knowing how the firing rate of pyramidal neurons
encodes time-varying stimuli requires understanding of the bio-
physical mechanisms governing their spiking activity.

In vitro experiments have shown that CA1 pyramidal cells
have an intrinsic preference for theta frequency input (Leung and
Yu, 1998; Pike et al., 2000; Hu et al., 2002; Narayanan and John-

ston, 2007; Zemankovics et al., 2010). However, these works
mostly focus on the entrainment of subthreshold membrane po-
tentials, whose relationship to spike phase locking is undeter-
mined. Moreover, recent work shows that the in vitro scenario
differs considerably from the in vivo one: during active states
neurons are bombarded with synaptic inputs (Penttonen et al.,
1998; Henze and Buzsáki, 2001; Destexhe et al., 2003; Harvey et
al., 2009; Epsztein et al., 2011); this bombardment leads to in-
creased membrane conductance and highly irregular membrane
potential fluctuations, which drive spiking. In CA1 pyramidal
neurons, these effects alter basic electrophysiological properties
and introduce changes in the input– output function (Prescott et
al., 2006, 2008; Fernandez and White, 2010; Fernandez et al.,
2011).

Dynamic-clamp technology allows the introduction of mem-
brane voltage fluctuations and conductance to cells in vitro. Us-
ing this technique, we can create an in vivo-like state and
investigate the action potential phase-locking profile of CA1 py-
ramidal neurons in response to a wide range of input frequencies.
We performed recordings under low and high background con-
ductance, at different firing rates, to account for in vivo data
showing task-related variations in mean rates of CA1 pyramidal
cells (Harvey et al., 2009; Epsztein et al., 2011). We here show that
in CA1 pyramidal neurons spike frequency adaptation acts as a
high-pass filter, which interacts with the cutoff frequency and an
intrinsic frequency preference of the spike-generating mecha-
nism, to set their phase-locking profile. The sensitivity of these
properties to background conductance and firing rate accounts
for the different locking profiles: this implies that pyramidal neu-
rons are dynamic entities, changed by the state of their input.
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Materials and Methods
Tissue preparation. All experimental protocols were approved by the Uni-
versity of Utah Institutional Animal Care and Use Committee. Horizon-
tal sections of hippocampus and entorhinal cortex were prepared from
21- to 36-d-old Long–Evans rats of either sex. All chemicals were ob-
tained from Sigma-Aldrich unless otherwise noted. After anesthetization
with isoflurane and decapitation, brains were removed and immersed in
0°C solution consisting of the following (in mM): 215 sucrose, 25
NaHCO3, 20 D-glucose, 2.5 KCl, 0.5 CaCl2, 1.25 NaH2PO4, 3 MgCl2,
buffered to pH 7.4 with 95% O2/5% CO2. Horizontal slices were cut to a
thickness of 400 �m (Leica VT 1200; Leica Microsystems). After the
cutting procedure, slices were incubated in artificial CSF (ACSF) at 30°C
for 20 min before being cooled to room temperature (20°C). Slices were
allowed to recover for at least 60 min before recordings commenced. The
ACSF consisted of the following (in mM): 125 NaCl, 25 NaHCO3, 25
D-glucose, 2 KCl, 2 CaCl2, 1.25 NaH2PO4, 1 MgCl2, and was buffered to
pH 7.4 with 95% O2/5% CO2. After the incubation period, slices were
moved to the stage of an infrared– differential interference contrast-
equipped microscope (Axioscope 2�; Zeiss). ACSF contained 10 �M

CNQX and 50 �M picrotoxin to block ionotropic synaptic activity. All
recordings were conducted between 32 and 34°C.

Electrophysiology. Electrodes were drawn on a horizontal puller (P97;
Sutter Instruments) and filled with an intracellular solution consisting of
the following (in mM): 120 K-gluconate, 20 KCl, 10 HEPES, 7 diTri-
sPhCr, 4 Na2ATP, 2 MgCl2, 0.3 Tris-GTP, 0.2 EGTA, and buffered to pH
7.3 with KOH. Final electrode resistances were between 1.5 and 3 M�,
with access resistance values between 5 and 15 M�. Electrophysiological
recordings were performed with a Multiclamp 700B amplifier (Molecu-
lar Devices), and data were acquired using pClamp 10 (version 10; Mo-
lecular Devices) or the Real-Time Experimental Interface software
(RTXI; www.rtxi.org) (Bettencourt et al., 2008; Lin et al., 2010). In some
experiments, tetrodotoxin (TTX) (5 nM) was bath-applied, and record-
ings were taken after a 10 –15 min incubation period. For dynamic-clamp
experiments, the patch-clamp amplifier was driven by an analog signal
from a personal computer running RTXI. Membrane potential fluctua-
tions (i.e., background noise) were introduced by two independent Pois-
son processes, triggering unitary artificial synaptic events. Frequency
modulation was introduced by injection of a separate current-based co-
sine, or through manipulation of the rate of one of the two Poisson
processes. One Poisson process triggered excitatory synaptic events at a
rate of 600 Hz; the other process triggered inhibitory events at a rate of
1000 Hz. These rates were used to obtain membrane potential fluctua-
tions consistent with in vivo results (Harvey et al., 2009; Epsztein et al.,
2011). Individual synaptic waveforms were generated using a biexponen-
tial function. For both excitation and inhibition, the rise time constant
was 0.5 ms. For excitation, the decay time constant was 2 ms, while it was
8 ms for inhibition. All synaptic events were modeled as currents. For
both low- and high-conductance trials, the magnitude of the input cur-
rent fluctuations was adjusted to yield subthreshold membrane potential
fluctuations with a SD of 2 mV; for these measurements, neurons were
held at mean membrane potentials close to �75 mV. This corresponded
to high-conductance recordings having individual synaptic events of
roughly twice the size as low-conductance recordings. In cases in which
conductance was added, a linear leak conductance was introduced via
dynamic clamp using the following equation: IL � gL(v � EL), where v is
the membrane voltage. For all experiments, EL was set to �75 mV and gL

was set to 15 nS. Modulation amplitudes were tuned at 1 Hz modulation
frequency at average rate of 2 spike/s in preceding experiments and cho-
sen to yield spike phase-locking strengths of a given value (vector
strength, �0.3) (see below, Analysis and statistics). Values used for the
average firing rate and the magnitude of membrane potential fluctua-
tions were chosen in accordance to in vivo recordings (Klausberger et al.,
2003; Harvey et al., 2009; Epsztein et al., 2011). A measured junction
potential of �10 mV was subtracted from all recordings and taken into
account during dynamic-clamp experiments. The sample rate of the dy-
namic clamp was set to 20 kHz. Data were collected at 20 kHz and
low-pass filtered at 3 kHz. When spike phase locking was recorded, firing
rates were monitored on-line and DC injection was used to control the

rates. We recorded four 1 min trials for low modulation frequencies (0.1
and 0.5 Hz) at an average firing rate of 2 spikes/s, and three 1 min trials for
all other frequencies. For cases with an average firing rate of 8 spikes/s, we
recorded three 1 min trials for 0.1 and 0.5 Hz modulations and two 1 min
trials for all other frequencies. Fast-Fourier transforms of the membrane
voltage and of the binary action potential trains revealed clear peaks at
the modulation frequencies, confirming the effectiveness of our stimulus
paradigm (data not shown). Spike trains were irregular and displayed CV
values between 0.8 and 1 for 2 spikes/s average rate and between 0.5 and
0.7 at 8 spikes/s mean rate.

In the case of frequency modulation through current-based cosines,
we used cosine amplitudes of 15 pA in the high-conductance (high g) and
7.5 pA in the low-conductance (low g) condition, except for the experi-
ment shown in Figure 5, in which an amplitude of 5 pA was used. The
modulation frequencies considered in the different experiments are al-
ways reported in the respective figure legends. When 5 nM TTX was
applied, the high g condition was recorded at 1.5 spikes/s. This was due to
the inability of some neurons to spike at 2 spikes/s in the presence of 5 nM

TTX under high g.
For introduction of an artificial adaptation current, we used a spike-

triggered biexponential current with a rise time constant of 1 ms and a
decay time constant of 500 ms. The adaptation current peak amplitude
was set to 50 pA. The adaptation current was injected after every spike
and summed with previously triggered injections. Introduction of the
adaptation current required an increased DC injection to keep the aver-
age spike rate similar in control and adapting conditions.

When f–I relationships were measured, we used current steps whose
amplitude covered twice the range of the modulatory cosines for high
and low conductance (�15 pA for low g: range of 30 pA; �30 pA for high
g: range of 60 pA).

Analysis and statistics. All analysis was performed in MATLAB (version
2010b; MathWorks) using custom software and/or built-in functions
and/or Origin (version 7.5; OriginLab). Spike times were determined by
finding the maxima of suprathreshold (�10 mV) intervals of membrane
voltage. Phase locking to a given modulation frequency was determined
by computing the vector strength, using the phases of individual spikes.
Each spike tk was treated as a unit vector with an angle �k corresponding

to the phase of the modulation frequency. The vector strength �vB� is
defined as the length of the normalized vector sum as follows:

vB �
1

N�
k�1

N

e��k (1)

for a total of N spikes. The current protocol for input impedance mea-
surements consisted of a white-noise current input with a frequency
cutoff of 100 Hz. Impedance [Z( f )] measures were calculated by taking
the ratio of the Fourier transform of the membrane voltage response and
current input stimulus. We evaluated the operating voltage as the mean
membrane voltage from 500 to 475 ms preceding each spike. Statistical
significance was determined using either a one-way ANOVA, or paired
or unpaired t tests. For repeated measures, statistical difference was de-
termined using Tukey’s honestly significant criteria, which increases the
threshold for significance. Means are presented with the SEM.

Relating gain to vector strength. By definition, the vector strength �vB� is
the modulus of the normalized vector sum of all the unit complex vectors
with angles equal to the phase of each spike. The number of spikes per
phase is given by the instantaneous firing rate f(�), so that

vB
def
�

1

�
0

2�

f��	d�

�
0

2�

f��	e��d�. (2)

When experimentally measured, f(�) was found via spike–phase histo-
grams, which appeared sinusoidal (see Fig. 1 Aiii,Biii). If f(�) was indeed
sinusoidal, then it could be expressed as f(�) � �f� � A cos(� � �0),
where �f� indicates the mean firing rate, and �0 is a phase shift induced by
the integration time of the cell. We then embedded such expression for
f(�) in Equation 2; note that because the vector strength is invariant
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under rotation, it was sufficient to consider the case �0 � 0. From stan-
dard integration we have

vB �
A

2
f�
. (3)

The vector strength is computed as the length of vB; in our case, vB is real,

so the vector strength equals vB. We could then estimate the amplitude A
of the histograms of firing phases as a function of the vector strength and
mean firing rate, for each frequency modulation. When using those am-
plitudes to fit the f(�) profiles, we had a good agreement for all frequency
modulations �100 Hz (Pearson’s correlation coefficient, �0.94). Thus,
the instantaneous firing-rate histograms were well approximated by
cosines.

We then proceeded by incorporating the potential role of gain in the
vector strength. The main assumption in this case was that, for slow
frequency modulations, the amplitude of the instantaneous firing rate
would be linear in the amplitude of the input current, scaled by gain. This
assumption formalizes as f(�) � �f� � mIA cos(� � �0), where m is the
gain value and IA is the amplitude of the input current. Thus, Equation 3
can be rewritten as follows:

vB �
mIA

2
f�
, (4)

Once we derived Equation 4, we compared the estimated vector strength
to the vector strength measured in the experiments.

Principal-component analysis and frequency preference index. In defin-
ing the principal components, we follow Jolliffe (1986). Given a finite
number of sample observations of a random vector, looking for its prin-
cipal components corresponds to identifying, in progressive ranking, the
best fitting subspaces such that the distances between the samples and
each subspace is minimized. Practically, this means decomposing the
space according to the eigen-values and the eigen-directions of the cova-
riance matrix of the given collection, and choosing only subspaces cor-
responding to higher spectral values. For each cell in a given condition
(high or low conductance, 2 or 8 spikes/s firing rate, addition of TTX to
the preparation), we use principal-component analysis (PCA) to identify
a first-order linear kernel the cell might be using to filter the input it
receives. We therefore performed experiments in which each pyramidal
cell received the noise current but no cosine modulation, and its firing
rate was controlled by DC. The exact noise realizations that the cell
received in the experiment could then be used to extract its first-order
kernel.

The input noise received by the cells during experiments had an auto-
correlation timescale of �201 ms, which affected the shape of the kernel
we were looking for. To remove the influence of the noise autocorrela-
tion from this estimate of the linear filter, we deconvolved each noise
realization by its autocorrelation. Our sample collection consisted of all
the spike-triggering events (parts of the deconvolved input given to the
cell in the experiments, each 200 ms long, ending at each spike time) and
an equal number of randomly sampled parts of the deconvolved input
(each sample 200 ms long as well). We constructed the covariance matrix
of the sample, and diagonalized the matrix, selecting the eigen-vector of
the highest eigen-value as the first principal component (PC1). We chose
to use only one component once we verified that there was some distance
between the maximum of the spectrum and the following values.

The first component PC1 (see Fig. 7Cii) was then considered the first-
order kernel of a linear system. We tested whether such a system, when
receiving inputs like the ones given to the pyramidal cells in our experi-
ments, showed preferential frequency locking. Specifically, we consid-
ered as its input minutes of deconvolved noise traces plus cosine currents
(with frequencies of 0.1, 0.5, 1, 2, 4, 8, 10, 20, 50, 100, and 500 Hz). Note
that the amplitudes of the cosine currents used for the convolutions were
scaled by the ratio of the SDs of the noise and its deconvolved version; this
was done to preserve the relative size of the cosine currents and the SD of
the noise. We then convolved such inputs with the filter (the PC1), to
estimate instantaneous activity, consistent with the standard approach,
which uses the spike-triggered average to predict the instantaneous firing

rate of a cell given its input (Dayan and Abbott, 2001). The cycle-
averaged activity profiles were cosine shaped (see Fig. 7Ciii), and we
rescaled the amplitude in each experimental condition by its maximum
across all modulation frequencies and cells in that condition, so that the
activity would have a maximum of 1 spike/s. Modulation frequency sig-
nificantly affected the activity amplitudes, in both the high- and low-
conductance conditions (low g, p � 0.001, n � 10; high g, p � 0.001, n �
10; both one-way ANOVA). We consider the sum of the normalized
activities and mean firing-rate values as instantaneous firing-rate distri-
butions. We computed the frequency preference index as each amplitude
divided by twice the mean firing rate, in agreement with Equation 3. The
resulting frequency preference index is higher for normalized activities
with higher amplitudes, and lower for those closer to a uniform distribu-
tion (i.e., a flat line). Overall, the frequency preference index profiles for
cells spiking at 8 spikes/s mean firing rates are lower than for cells spiking
at 2 spikes/s. Plots of the mean and SE of the frequency preference indices
for cells in all experimental conditions are reported in Figures 7 and 8.

Simulations. All simulations were run in MATLAB (MathWorks) us-
ing a fourth-order Runge–Kutta solver with a time step of 0.04 ms. The
biophysical model is defined as follows:

� Cv̇ �
�gNam
�v	h3�v � ENa	 � gL�v � EL	
� gRr�v � ER	 � Iinput�t	

ḣ � �h
�v	 � h	/�h

ṙ � �r
�v	 � r	/�r

, (5)

where

m
�v	 � 1�� 1 � e�� v�30

4 		 (6)

h
�v	 � 1�� 1 � e� v�52

2 		 (7)

and with

I input�t	 � IDC � gnI�t	 � IAcos�2�ft	, (8)

where IDC is the constant drive used to tune the firing rate, IA is the
amplitude of the cosine modulation, with frequency f, gn is a scaling
factor for I(t), and I(t) is the noise input, introduced in Equations 12, 13,
and 14. Note that, during each experiment, the input to the cell was scaled
by a factor analogous to gn (see above, Electrophysiology). In this work,
we drove cells with either inhomogeneous Poisson stimuli or the sum of
homogeneous Poisson processes and sinusoidal currents; we tested the
model on the latter case. For spike repolarization, membrane voltage was
reset to �65 mV subsequent to crossing 15 mV. Resonating properties
are introduced by

	r�v	 � 0.001�v � 35	�� 1 � e�� v�35

5 		 (9)


r�v	 � �0.001�v � 35	�� 1 � e� v�35

5 		 (10)

r
�v	 �
	r�v	

	r�v	 � 
r�v	
, (11)

where �r is constant at 125 ms.
Across the different conditions, the following parameters were kept

constant: C � 1.5 �F/cm 2, gNa � 6 mS/cm 2, �h � 200 ms, ENa � 50 mV,
EL � �65 mV, ER � �90 mV, gR � 0.1 mS/cm 2. We approximated the
activation variable associated with the sodium conductance m as instan-
taneous; therefore, it was modeled using only its steady-state function.
Membrane voltage fluctuations were introduced in the same manner as
in the experiments, and I(t) was scaled by gn, to yield voltage fluctuations
with �2 mV SD. The magnitude of the sinusoidal modulation current IA

was set to yield a vector strength value of �0.3 for a modulation fre-
quency of 1 Hz at a firing rate of 2 spikes/s for each conductance condi-
tion, and held constant for different firing rates (see Fig. 9).
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Analytical derivation of the modulation amplitude of inhomogeneous
Poisson noise. In the last set of experiments, the input current was the sum
of an inhibitory and an excitatory component,

I�t	 � Ie�t	 � Ii�t	, (12)

where each component was given by the convolution of a Poisson process
with an artificially designed synaptic wave, modeled as a biexponential.
This can be written as follows:

Ii�t	 � �
k�1

Ni�t	

H�t � Sk
i 	 Fi� e��

t�Sk
i

�Di
	 � e��

t�Sk
i

�Ri
		 (13)

Ie�t	 � �
k�1

Ne�t	

H�t � Sk
e	 Fe� e��

t�Sk
e

�De
	 � e��

t�Sk
e

�Re
		 , (14)

where Ni(t) and Ne(t) are Poisson processes, Sk are the event times of the
processes (with superscripts differentiating between excitatory and inhibi-
tory), H(�) is the Heaviside function, �R and �D are the timescales of rise and
decay of each artificial synaptic signal (with their own subscripts as well), and
Fi and Fe are the normalization factors, which ensure that each synaptic event
peaks at 1. We chose to introduce the frequency modulation by changing the
rate of the Poisson processes. When excitation was modulated, we had Ni(t),
a homogeneous Poisson process with rate �� i � 1000 Hz, and Ne(t), an
inhomogeneous Poisson process with rate �� e�1 � cecos�2�ft		,
where �� e � 600 Hz, f is the modulation frequency, and ce is the strength of
the modulation (ce � 25%). When inhibition was modulated, we had Ne, a
homogeneous Poisson process with rate �� e , and Ni(t), inhomogeneous. The
rate of Ni was �� i�1 � ci cos�2�ft		, with ci � 5%.

Intuitively, for each decay timescale, the biexponential artificial synaptic
waveform acts as a filter over the instantaneous pulses of the Poisson process.
Therefore, for rates modulated with progressively faster cosines, the trains of
events are increasingly attenuated. Specifically, the trial average of the cur-
rent input converges to its expected value, by the law of large numbers. The
cycle average (i.e., the average over each cosine period) of this expectation
can then be used to compute its amplitude as a function of the modulation
frequency.

On average over many trials, the input signal defined by Equation 12 looks
sinusoidal. In this section, we show how to derive analytically the amplitude
of this average curve, which gives the magnitude of the frequency modula-
tion in this signal. For clarity of reading, we will show the derivation only for
the case in which inhibition is modulated. By the law of large numbers, the
average of I(t) over m trials converges to its expected value


I�t	�m
O¡
m3


E�I�t	� � E�Ie�t	� � E�Ii�t	�. (15)

We start from the inhibitory term. We derive the expectations by condition-
ing on the number of events up to time t, given E�Ii�t	� � E�E�Ii�t	�N�t	��. So
we consider

E�Ii�t	�N�t	 � n� � Fi� e�t/�DiE
 �
k�1

n

H�t � Sk
i 	eSk

i /�Di�N�t	 � n�
� e�t/�RiE
 �

k�1

n

H�t � Sk
i 	eSk

i /�Ri�N�t	 � n�	 . (16)

It is known that for an inhomogeneous Poisson process of rate �(t),
given there are n events in the time interval [0, t), these points are
independent and identically distributed with density ��t	/�0

t��u	du
(Cox and Isham, 1980). We apply this fact to the Sk

i in the previous
equation and find

E
 �
k�1

n

H�t � Sk
i 	eSk

i /�Di� N�t	 � n� def
�

�
k�1

n �
0

t

ex/�Di�� i �1 � cicos�2�fx		dx��
0

t

��u	du. (17)

We now can take the expectation of this conditioned expectation to find
E[Ii(t)]:

E�Ii�t	� � E�E�Ii�t	 � N�t	�� �

�
E�N�t	�

�
0

t

��u	du

�� iFi
 e�t/�Di�
0

t

ex/�Di�1 � ci cos�2�fx		dx

� e�t/�Ri�
0

t

ex/�Ri�1 � ci cos�2�fx		 dx�. (18)

Then standard calculus gives

E�Ii�t	� � �� iFi
 ci�Di

1 � �2�f�Di	
2�cos�2�ft	 � 2�f�Di sin�2�ft	 � e�t/�Di	

� �Die
�t/�Di�et/�Di � 1	 � �Rie

�t/�Ri�et/�Ri � 1	

�
ci�Ri

1 � �2�f�Ri	
2�cos�2�ft	 � 2�f�Ri sin�2�ft	 � e�t/�Ri	�. (19)

The same derivation applied to the excitation (which is based on the
homogeneous Poisson process Ne in this case) yields

E�Ie�t	� � �� eFe��De�1 � e�t/�De	 � �Re�1 � e�t/�Re	�. (20)

Then, E[I(t)] is given by the difference between Equations 20 and 19.
To compute the amplitude of E[I(t)], which we will label Amp, con-

sider the circular mean of E[I(t)]:

C�s	
def
� lim

N3


1

N �
m�0

N�1

E�I�s � mT	� (21)

with T �
1

f
, s � [0, T ). That gives

C�s	 � �� eFe��De � �Re	 � �� iFi��Di � �Ri	

� �� iFici
� �Di

1 � �2�f�Di	
2 �

�Ri

1 � �2�f�Ri	
2	 cos�2�fs	

� 2�f� �Di
2

1 � �2�f�Di	
2 �

�Ri
2

1 � �2�f�Ri	
2	sin�2�fs	�. (22)

Now Amp is equal to the amplitude of C(s). Given the amplitude of
	 cos(2�fx) � 
 sin(2�fx) is 
	2 � 
2, then the amplitude of C(s) is

Amp � �� iFici 
 ��Di � �Ri	
2

�1 � �2�f�Di	
2	 �1 � �2�f�Ri	

2	
. (23)

Analogously, one can derive the amplitude for the excitation-modulated
case, which will be exactly Amp, only with the excitation in the subscripts.

Results
Action potential phase-locking profile of CA1 pyramidal cells
in response to current-based cosines
A widely used readout for the participation of a single neuron in
a network rhythm is the relationship between its action potentials
and the phase of the oscillation. In this study, our goal was to
quantify the action potential phase locking of CA1 pyramidal
neurons to an artificial oscillatory input, and to identify the un-
derlying biophysical mechanisms. We stimulated the neurons
with biexponential, current-based excitatory and inhibitory arti-
ficial synaptic inputs (see Materials and Methods) driven by sep-
arate Poisson processes. This replicated the membrane voltage
fluctuations observed in awake behaving animals (Harvey et al.,
2009; Epsztein et al., 2011). Frequency modulations were intro-
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duced via current-based sinusoids. We re-
corded the phases of action potentials
with respect to the different modulation
frequencies and quantified the degree of
their phase locking.

In vivo work (Destexhe et al., 2003) also
shows that neurons embedded in active net-
works have high membrane conductance.
To investigate the effects of changes in
membrane conductance on the phase-
locking behavior of CA1 pyramidal neu-
rons, experiments were performed in the
control (low conductance, low g) condition
and with increased background conduc-
tance (high conductance, high g), by inject-
ing a linear leak of 15 nS. The added linear
leak reduced the apparent input resistance
from 84 � 1 to 39 � 0.3 M� (n � 353).

To span a wide frequency region above
and below the delta, theta, beta, and gamma
bands, we used modulation frequencies of
0.1, 0.5, 1, 4, 8, 12, 20, 50, 100, and 500 Hz
(Fig. 1). The phases of individual action po-
tentials were used to compute the vector
strength for each frequency (see Materials
and Methods). The vector strength is a mea-
sure of phase locking that yields values be-
tween 0 and 1, where 0 indicates a uniform
distribution and 1 indicates perfect locking.
At average firing rates of 2 spikes/s, we
found that changes in background conduc-
tance induce qualitative differences in the
phase-locking behavior in CA1 pyramidal
cells. In the low-conductance case, we ob-
served a low-pass-like phase-locking profile,
while under high conductance the profile
was bandpass, peaking at 4 Hz (Fig. 1C, solid
symbols). In both cases, the modulation fre-
quency significantly influenced the action
potential phase locking (low g, n � 7–25,
p � 0.001; high g, n � 8–22, p � 0.001, both
one-way ANOVA).

The experiments described so far were
performed at an average firing rate of 2
spikes/s, which matched observations in
CA1 pyramidal neurons during explor-
atory behavior and under anesthesia
(Klausberger et al., 2003; Harvey et al.,
2009). In vivo data also indicate that the
firing rate of CA1 pyramidal neurons in-
creases under certain physiological condi-
tions, for example, when the animal enters
the place field of the neuron (O’Keefe,
1976; Harvey et al., 2009; Epsztein et al.,
2011). We investigated the influence of an
increased firing rate on the phase-locking
profile by recording the responses of CA1
pyramidal cells to current cosines of varying frequencies at an
average firing rate of 8 spikes/s (Fig. 1B). We found that an in-
crease in firing rate qualitatively affected the phase-locking be-
havior: under low conductance the profile changed from low pass
to bandpass, peaking at 4 Hz, while under high conductance the
bandpass profile changed into a high-pass-like profile (Fig. 1C,

open symbols). As before, the modulation frequency significantly
influenced the phase-locking strength (low g, n � 6 –17, p �
0.001; high g, n � 4 –15, p � 0.001; both one-way ANOVA).

Overall, our data show a strong dependence of phase locking on
both average firing rate and background conductance. With increas-
ing firing rate, we observed an overall drop in phase-locking

Figure 1. Action potential phase locking in response to current-based cosines. A, Response to current-based cosines at average
firing rates of 2 spikes/s under low (i) and high (ii) conductance. Sinusoidal modulation at 8 Hz is indicated below the voltage
traces. iii, Average spike–phase histogram in response to 8 Hz modulation at average spike rates of 2 spikes/s. Low conductance is
shown in black, high conductance is shown in red. B, Response to current-based cosines at average firing rates of 8 spikes/s under
low (i) and high (ii) conductance. Sinusoidal modulation at 8 Hz is indicated below the voltage traces. iii, Average spike–phase
histogram in response to 8 Hz modulation at average spike rates of 8 spikes/s. Low conductance is shown in black; high conduc-
tance is shown in red. C, Vector strength versus modulation frequency plots for low (black) and high (red) conductance at average
firing rates of 2 (solid squares) and 8 (open squares) spikes/s. Tested modulation frequencies were as follows: 0.1, 0.5, 1, 4, 8, 12,
20, 50, 100, and 500 Hz.
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strength, under both high and low g. Moreover, an increase in back-
ground conductance shifted the cutoff frequency of action potential
phase locking to a higher value. Note that this quantity is distinct
from the cutoff frequency of the membrane potential (compare Figs.
1C, 7A). This discrepancy has been found in other cell types (du Lac
and Lisberger, 1995; Carandini et al., 1996; Köndgen et al., 2008).

Gain of the f–I relationship can be used to predict the action
potential phase-locking profile of CA1 pyramidal neurons for
lower modulation frequencies
Our investigation so far revealed that pyramidal cells phase-
locking behavior can display a variety of profiles depending on

average firing rate and background con-
ductance, and is more complex than pre-
viously suggested (Leung and Yu, 1998;
Pike et al., 2000; Fellous et al., 2001; Hu et
al., 2002; Narayanan and Johnston, 2007;
Zemankovics et al., 2010). We were inter-
ested in identifying the biophysical mech-
anisms underlying such diversity of
responses. In particular, the action poten-
tial phase locking to low modulation fre-
quencies (�4 Hz) was different across
conductance conditions at average firing
rates of 2 spikes/s, but similar for average
firing rates of 8 spikes/s (Fig. 1C). For slow
enough input frequencies, we conjectured
that variations of the cosine current in
time could exert effects similar to DC vari-
ations. Consequently, we hypothesized
that phase locking to low modulation fre-
quencies may be approximated by the fir-
ing frequency versus injected current
relationship ( f–I curve), which can be de-
rived from step responses. Previous work
has shown that changes in background
conductance change the slope (gain) of
the f–I relationship of CA1 pyramidal
neurons, and that gain is influenced by the
mean operating voltage (Fernandez and
White, 2010; Fernandez et al., 2011). We
conjectured that, for low modulation fre-
quencies, differences in gain across con-
ductance conditions and mean firing rates
may account for the observed differences
in vector strength. To test this hypothesis,
we held CA1 pyramidal neurons at aver-
age firing rates of 2 or 8 spikes/s and re-
corded action potentials evoked in
response to depolarizing and hyperpolar-
izing current steps of 5 s duration (n � 11;
Fig. 2). We chose the step length as one-
half the slowest modulation period. In ad-
dition to the current steps, the neurons
received the same fluctuating background
current input generated using nonmodu-
lated Poisson processes as before. Gain
was computed as the slope of the linear fit
to the f–I relationships (Fig. 2Bi,Bii,Ci).
The gain values were then used to estimate
the vector strength for a modulation fre-
quency of 0.1 Hz.

The phase-locking estimate was de-
rived analytically (see Materials and Methods), yielding Equation
4, which was the basis to test whether gain regulated the response
of the pyramidal cells at the slowest frequency modulation tested
in the experiments. We found good agreement between the esti-
mate and the experimental data for action potential phase locking
to a modulation frequency of 0.1 Hz for all four experimental
conditions (Fig. 2Cii). We thus concluded that the gain derived
from step responses was sufficient to predict action potential
phase locking to slow time-varying stimuli. Furthermore, Equa-
tion 4 shows that the vector strength is inversely proportional to
the mean firing rate. This explains the small difference in vector
strength values �1 Hz modulation observed for high and low g at

Figure 2. Prediction of vector strength for a modulation frequency of 0.1 Hz through gain measured using step responses.
Neurons received step depolarizations and hyperpolarizations while held at baseline firing rates of 2 and 8 spikes/s. A, Example
voltage traces showing responses to depolarizing (right traces in each panel) and hyperpolarizing (left traces in each panel) current
steps from baseline firing rates of 2 (i, iii) and 8 (ii, iv) spikes/s. A recording under low conductance is shown in i and ii; a recording
under high conductance is shown in iii and iv. B, Example plots of firing rate versus step size, at base firing rates of 2 (i) and 8 (ii)
spikes/s. A step size of zero indicates the DC value used to keep the neuron at the respective firing rate. Recording under low
conductance is shown in black; high conductance is shown in red. The solid lines indicate linear fits used to calculate the gain (slope
of the linear fit). Ci, Average gain values for recordings at baseline firing rates of 2 (solid squares) and 8 (open squares) spikes/s. Low
conductance is shown in black; high conductance is shown in red. ii, Comparison of measured and predicted vector strength.
Predictions were derived using Equation 4 for a modulation frequency of 0.1 Hz and are denoted by triangles. Measured vector
strengths are given for the same modulation frequency and are shown as squares. The closed symbols refer to 2 spikes/s average
firing rate; open symbols refer to mean rates of 8 spikes/s. Low conductance is shown in black; high conductance is shown in red.
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average firing rates of 8 spikes/s. This re-
lationship could also account for the over-
all drop in vector strength observed when
firing rates were increased from 2 to 8
spikes/s in the experiments.

To investigate whether the accuracy of
the estimate extended to higher frequencies,
we compared the predicted and the mea-
sured vector strength for such frequencies.
Except for one case (2 spikes/s firing rate,
low g), we observed decreasing prediction
accuracies with increasing modulation fre-
quencies up to the peak or the plateau of the
respective experimental condition. This in-
dicated that the gain measured using 5 s cur-
rent steps was most accurate for predictions
of phase locking to a modulation frequency
of 0.1 Hz. Given that spike frequency adap-
tation has been shown to be important for
setting the gain of CA1 pyramidal neurons
(Fernandez and White, 2010; Fernandez et
al., 2011), and because the influence of spike
frequency adaptation depends on the length
of the step considered, we conjectured that
shorter steps might be more accurate for
predictions of phase locking to higher fre-
quencies. To test this hypothesis, we chose
modulation frequencies between 0.5 and 10
Hz, and considered step lengths of one-half
their period. We then reanalyzed the same
dataset, considering only spikes in the time
windows corresponding to a given modulation frequency. Due to
the low number of spikes in the shorter time windows in the 2
spikes/s mean firing rate condition, we restricted this analysis to 8
spikes/s mean firing rate. We found significant differences in gain
with different step lengths (low g, p � 0.05, n � 11; high g, p � 0.001,
n � 11, one-way ANOVA; Fig. 3A). For both high and low g, the gain
increased as the step length was decreased from 5 s to 125 ms. This
result indicated a contribution of spike frequency adaptation to es-
tablishing the gain of CA1 pyramidal neurons. We used Equation 4
to estimate the vector strength for faster modulation frequencies
with the respective gain values. In the low-conductance condition,

the prediction fitted the measured vector strength well up to 1 Hz,
after which the estimates decreased in accuracy, but still captured the
general trend (Fig. 3B). For high conductance, we found a good
agreement from 0.1 to 10 Hz (Fig. 3C).

In summary, our gain data using different step lengths indi-
cated a prominent influence of spike frequency adaptation on the
phase-locking profiles at mean firing rates of 8 spikes/s. In agree-
ment with the high-pass filter properties ascribed to spike fre-
quency adaptation (Benda and Herz, 2003), lower modulation
frequencies were associated with lower vector strengths. Differ-
ent profiles were associated with different action potential cutoff

Figure 3. Prediction of vector strength for higher modulation frequencies through gain measured using step responses at baseline firing rates of 8 spikes/s. Analysis was done on the same dataset
shown in Figure 2. A, Gain for different step lengths associated with modulation frequencies of 0.1, 0.5, 1, 4, and 10 Hz. Step length was one-half the period of the respective frequency (5000, 1000,
500, 125, and 50 ms, respectively). B, Comparison of measured and predicted vector strength for different modulation frequencies under low conductance. Predictions are shown as triangles and
were derived using Equation 4 and the frequency-specific gain shown in A. Measured vector strengths are shown as squares. C, Comparison of measured and predicted vector strength for different
modulation frequencies under high conductance. Predictions are shown as triangles and were derived using Equation 4 and the frequency-specific gain shown in A. Measured vector strengths are
shown as squares.

Figure 4. Introduction of an adaptation current selectively reduces action potential phase locking to lower modulation frequen-
cies. A, Response to current-based cosines at average firing rates of 4 spikes/s under low conductance. Sinusoidal modulation at 10
Hz is indicated below the voltage traces. B, Response to current-based cosines at average firing rates of 4 spikes/s under low
conductance with addition of an artificial adaptation current. Sinusoidal modulation at 10 Hz is indicated below the voltage traces.
C, Average spike–phase histogram in response to 10 Hz modulation at average spike rates of 4 spikes/s. Low conductance is shown
in black; low conductance with an additional adaptation current is shown in gray. D, Vector strength versus modulation frequency
under low conductance (black) and low conductance with added adaptation current (gray); at average firing rates of 4 spikes/s.
Tested modulation frequencies were as follows: 0.1, 1, 4, and 10 Hz. Note the decreased locking to 0.1 and 1 Hz with added
adaptation current.
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frequencies, depending on background conductance. Under high
conductance, the cutoff was located at high frequencies, thus
revealing a phase-locking plateau, while the bandpass profile un-
der low conductance was due to an earlier cutoff. Thus, at mean
firing rates of 8 spikes/s, we could relate gain measured using
current steps to responses to time-varying stimuli in CA1 pyra-
midal neurons, and show that the phase-locking strength is given
by the combination of spike frequency adaptation, gain, and the
action potential cutoff.

Spike frequency adaptation reduces
phase locking to low frequencies
Based on results from Figures 1–3, we con-
cluded that (1) differences at low modula-
tion frequencies in Figure 1C are caused by
differences in gain, and (2) the shape of the
vector strength curve for the 8 spikes/s firing
rate and modulation frequencies �10 Hz is
dominated by stimulus-induced changes in
spike frequency adaptation. To provide a
proof of principle that adaptation reduces
locking to low modulation frequencies, we
introduced a spike-triggered adaptation
current into CA1 pyramidal neurons via dy-
namic clamp (see Materials and Methods).
We recorded phase-locking at an average
rate of 4 spikes/s under low conductance
(n � 8; Fig. 4). Confirming our predictions,
introduction of the adaptation current se-
lectively reduced locking to low modulation
frequencies (0.1 and 1 Hz modulation fre-
quency, control vs adaptation, both p �
0.001, 4 and 10 Hz modulation not signifi-
cant, all paired t test).

Action potential phase-locking peaks
are sensitive to changes in firing rate
We used gain to establish the relationship
between spike frequency adaptation and
phase-locking profiles for higher firing
rates. At average firing rates of 2 spikes/s,
this was only possible for the modulation
frequency of 0.1 Hz. To investigate the
role of spike frequency adaptation in the
locking profiles at low firing rates, we in-
troduced a different approach. If spike
frequency adaptation has a prominent in-
fluence on the action potential phase-
locking profile at low mean firing rates, it
should be possible to change it through
manipulations likely to influence adapta-
tion. It has been shown that increasing fir-
ing rate and conductance enhances spike
frequency adaptation (Fernandez and
White, 2010). Hence, the phase-locking
profile at 2 spikes/s firing rate in high con-
ductance should change from bandpass to
low pass if spike frequency adaptation is
decreased via a reduction in firing rate.
Analogously, the phase-locking profile at
2 spikes/s firing rate under low conduc-
tance should change from low pass to
bandpass when spike frequency adapta-
tion increases by increasing the average

firing rate.
To test these predictions, we first recorded the action potential

phase-locking profile of CA1 pyramidal neurons under high con-
ductance at an average firing rate of �1 spike/s, and observed a
low-pass phase-locking profile (Fig. 5A; n � 8). We then re-
corded the action potential phase-locking profile at 3 spikes/s and
observed a bandpass profile (Fig. 5B; n � 9, p � 0.05, one-way
ANOVA, 0.1 vs 1 Hz modulation, p � 0.001, paired t test). These
results confirmed our prediction that spike frequency adaptation

Figure 5. Action potential phase-locking peaks are sensitive to changes in firing rate. A, Phase locking at average firing rates of
1 spike/s under high conductance with a modulation amplitude of 15 pA. i, Example voltage trace. Sinusoidal modulation at 8 Hz
is indicated below the voltage trace. ii, Average spike–phase histogram in response to 8 Hz modulation at an average spike rate of
1 spike/s. iii, Vector strength versus modulation frequency. Tested modulation frequencies were as follows: 0.1, 1, 4, and 8 Hz. iv,
Comparison between vector strength at average firing rates of 1 (upward triangles) and 2 (squares) spikes/s. The vector strength
normalized to 0.1 Hz modulation is plotted versus the modulation frequency. Note the change from low pass at 1 spike/s average
rate to bandpass at 2 spikes/s mean rate. B, Phase locking at average firing rates of 3 spikes/s under low conductance with a
modulation amplitude of 5 pA. i, Example voltage trace. Frequency modulation of 8 Hz is indicated by the sinusoid below the
voltage trace. ii, Average spike–phase histogram in response to 8 Hz modulation at an average spike rate of 3 spikes/s. iii, Vector
strength versus modulation frequency. Tested modulation frequencies were as follows: 0.1, 1, 4, and 8 Hz. iv, Comparison between
vector strength at average firing rates of 3 (downward triangles) and 2 (squares) spikes/s. Vector strength normalized to 0.1 Hz
modulation is plotted versus the modulation frequency. Modulation amplitude for 2 spikes/s mean rates was 7.5 pA; amplitude for
3 spikes/s mean rate was 5 pA. Note the change from low pass at 2 spikes/s average rate to bandpass at 3 spikes/s mean rate.

Broicher, Malerba et al. • Spike Phase Locking of CA1 Pyramidal Neurons J. Neurosci., October 10, 2012 • 32(41):14374 –14388 • 14381



is involved in shaping the locking profile
at 2 spikes/s average firing rate under high
and low conductance.

Low concentrations of TTX reduce
phase locking to low
modulation frequencies
Our results so far demonstrated the im-
portance of spike frequency adaptation in
shaping the phase-locking profiles of CA1
pyramidal cells. Previous work suggests
the involvement of cumulative sodium
current inactivation in setting spike fre-
quency adaptation and gain in CA1 pyra-
midal neurons (Fernandez and White,
2010). In particular, our past work shows
that low concentrations of TTX reduce
the gain of CA1 pyramidal neurons
through an increase of spike frequency
adaptation (Fernandez et al., 2011). To
test whether a reduction in gain through a
reduction in sodium current availability
would affect the action potential phase-
locking profile, we recorded from CA1 py-
ramidal cells in the presence of 5 nM TTX
(n � 8; Fig. 6). In both cases, the locking
profile was bandpass, peaking at 4 Hz un-
der low conductance and between 4 and 8
Hz under high conductance (influence of
modulation was significant: low g, p �
0.001; high g, p � 0.001; both one-way
ANOVA).

Comparing control and TTX condi-
tions revealed a selective reduction of
locking to low frequencies (0.1–1 Hz; Fig.
6B), consistent with a decrease in gain
through an increased spike frequency ad-
aptation, which only affects the locking
strength at low frequencies. The enhanced
adaptation was likely due to two factors.
First, the reduced total sodium current
available renders the neuron more sus-
ceptible to a further loss of sodium cur-
rent caused by cumulative inactivation.
Second, the mean operating voltage for a
given firing rate in the presence of TTX
was increased by 8 –10 mV, thus augment-
ing cumulative inactivation.

In summary, our data show that sodium current is involved in
setting the phase-locking profile of CA1 pyramidal neurons. This
further supports our interpretation of the role of spike frequency
adaptation in the locking behavior of these cells.

Evidence for an intrinsic frequency preference in the spike
generation mechanism
We showed that spike frequency adaptation is a main factor in the
phase locking of CA1 pyramidal neurons. Consistently, at an
average firing rate of 8 spikes/s, we found a sustained plateau-
like profile across a band of higher frequencies. If spike frequency
adaptation was the only factor involved in setting the action po-
tential phase-locking profile, a similar behavior should have been
observed in the presence of TTX at low rates under high conduc-
tance, but this was not the case. Furthermore, spike frequency

adaptation cannot account for the preference for modulation at 4
Hz in the high-conductance case at 2 spikes/s under control con-
ditions. Given these results, we hypothesized that an intrinsic
frequency preference could also be involved in shaping the phase-
locking profiles (Brumberg and Gutkin, 2007). This would point
to a scenario in which the overall behavior of CA1 pyramidal
neurons firing at 2 spikes/s under high conductance would result
from the combined influence of spike frequency adaptation, set-
ting a plateau at higher modulation frequencies, and an addi-
tional intrinsic frequency preference at �4 Hz, resulting in a
superimposed small peak. Hence, we continued by probing CA1
pyramidal neurons for a possible frequency preference in addi-
tion to spike frequency adaptation.

Previously, subthreshold resonance phenomena have been pro-
posed to be involved in setting a frequency preference for CA1 pyra-

Figure 6. Application of 5 nM TTX reduces phase locking to low frequencies. Ai, Response to current-based cosines at average
firing rates of 2 spikes/s under low conductance. Modulation amplitude was 7.5 pA. ii, Response to current-based cosines at
average firing rates of 1.5 spikes/s under high conductance. Modulation amplitude was 15 pA. Sinusoidal modulation at 8 Hz is
indicated below the voltage traces in i and ii. iii, Average spike–phase histograms in response to 8 Hz modulation under low (black)
and high (gray) conductance. iv, Vector strength versus modulation frequency under low (black) and high (gray) conductance.
Tested modulation frequencies were as follows: 0.1, 1, 4, 8, 12, and 20 Hz. B, Comparison between vector strength in the presence
(large triangles) and absence (small squares) of 5 nM TTX under low (black) and high (gray) conductance. Locking to low modula-
tion frequencies is selectively reduced by TTX.
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midal neurons in the theta band (Leung and Yu, 1998; Pike et al.,
2000; Hu et al., 2002; Narayanan and Johnston, 2007; Zemankovics
et al., 2010). If subthreshold resonant currents were the major cause
for a phase-locking peak, increasing conductance should shunt
these currents, reducing the subthreshold resonance (Hutcheon
et al., 1996; Fernandez and White, 2008; Fernandez et al., 2011) and
thus reducing the locking preference. To test this prediction, we
recorded the impedance profile under low and high conductance
(Fig. 7A) (see Materials and Methods). As expected, the Q value
dropped under high conductance (p � 0.01, n � 12, paired t test; Q
values: low g, 1.21 � 0.03; high g, 1.12 � 0.02). Therefore, increasing
background conductance has opposite effects on the subthreshold
impedance and the action potential phase-locking profile.

On the other end, a change in background conductance could
affect the operating voltage, which in turn can influence the imped-
ance profile (Hu et al., 2002; Narayanan and Johnston, 2007; Zem-
ankovics et al., 2010). This effect could counteract the effect of
background conductance shown in Figure 7A. We observed no sig-
nificant difference in the operating voltage between high and low g at

either a mean rate of 2 or 8 spikes/s (Fig. 7B).
This argues against a differential activation
of resonant properties between high and
low conductance.

Our analysis suggests no strong rela-
tionship between the phase-locking pro-
files of CA1 pyramidal neurons and
subthreshold resonance. For this reason,
we investigated a possible frequency pref-
erence in the spike generation mechanism
(Brumberg and Gutkin, 2007). To test
whether the spike-triggering events de-
rived from input without any frequency
modulation showed any inherent prefer-
ence, we recorded from CA1 pyramidal
neurons firing at an average rate of 2
spikes/s under low and high conductance.
The neurons received the same back-
ground current inputs as before, without
any frequency modulation.

We performed principal-component
analysis on the population of spike-
triggering input events (PCA) (see Mate-
rials and Methods). We used the principal
components to define a frequency prefer-
ence index (Fig. 7Civ), which ranges be-
tween 0 and 1, where higher values
represent increased locking (for details,
see Materials and Methods). The index
showed a bandpass profile in both low and
high conductance, peaking at 2 and 4 Hz,
respectively. These results indicated a fre-
quency preference of the spike generation
mechanism, which was sensitive to
changes in background conductance, at
mean firing rates of 2 spikes/s. Thus, we
concluded that the low-pass phase-
locking profile in the low-g case resulted
from the absence of adaptation and the ac-
tion potential cutoff frequency, which over-
rode the intrinsic frequency preference. In
the high-conductance case, the cutoff
shifted to higher frequencies, and the band-
pass profile resulted from adaptation, and

the intrinsic frequency preference, unmasked by the shifted cutoff.
Note that, given the absence of cosine modulation in the

spike-triggering events used for the PCA, the effect of adaptation
on the phase-locking profiles could not be evaluated by this anal-
ysis. In fact, the sinusoidal modulation itself recruits adaptation,
which acts differently at different modulation frequencies. Fur-
thermore, the voltage fluctuation induced irregularity of the
spike trains (CVs between 0.8 and 1 for 2 spikes/s mean rate and
between 0.5 and 0.7 for 8 spikes/s mean rate) in combination with
the absence of cosine modulation in the input argues against a
strong influence of firing-rate resonance (i.e., preferential lock-
ing to modulation frequency equal to firing rate) to the frequency
preference described here (see below).

Next, we performed the same analysis on recordings at firing
rates of 8 spikes/s. We found bandpass-like profiles for both con-
ductance conditions (Fig. 8A), with peaks at 4 Hz under low g and
between 8 and 10 Hz under high g. The higher mean rate led to an
overall drop of the frequency preference index. This indicated
that the intrinsic frequency preference of the spike generation

Figure 7. Evidence for an intrinsic frequency preference. A, Subthreshold impedance profile under low (black) and high (gray)
conductance. The gray lines show sliding window averages. Note the reduced peak under high conductance. B, Mean operating
voltages at average firing rates of 2 (solid squares) and 8 (open squares) spikes/s under low (black) and high (gray) conductance
(values for 8 Hz modulation frequency are presented; we observed no significant differences between modulation frequencies;
one-way ANOVA). C, Principal-component analysis of spike-triggering events at average firing rates of 2 spikes/s. i, Spike-triggered
averages of the input current for mean firing rates of 2 spikes/s under low (black) and high (gray) conductance. Input currents used
to measure spike-triggering events in neurons did not include any frequency modulation. ii, Average first principal components of
the spike-triggering events under low (black) and high (gray) conductance at mean firing rates of 2 spikes/s. iii, Average normal-
ized activity versus phase for a modulation frequency of 8 Hz. Activity for low conductance is shown in black; high conductance is
shown in red. iv, Frequency preference index of the first principal components under low (black) and high (gray) conductance.
Tested modulation frequencies were as follows: 0.1, 0.5, 1, 2, 4, 8, 10, 20, 50, 100, and 500 Hz.
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mechanism was sensitive to the mean fir-
ing rate. Note that our analysis cannot ad-
dress the relative importance of the
different mechanisms involved in shaping
the phase-locking profiles. Therefore,
consistent with the lower indices found in
this case, we think that, at firing rates of 8
spikes/s, the intrinsic frequency prefer-
ence was overridden by spike frequency
adaptation.

Finally, we performed the same analy-
sis on recordings done in the presence of 5
nM TTX, without frequency modulation.
The resultant frequency preference index
was found to be bandpass for both high
and low conductance (Fig. 8B), with peak
frequency at 4 Hz in both conditions.

In summary, PCA provided evidence
for the existence of an intrinsic frequency
preference in the spike-generating mech-
anism across the different experimental
conditions. In our interpretation of these
results, the preference of the spike-
generating mechanism acted in concert
with adaptation, the cutoff, and possibly
additional factors, to set the phase-
locking profile of CA1 pyramidal
neurons.

Action potential phase-locking profiles
can be qualitatively reproduced in a
simple model
Next, we tried to qualitatively reproduce the
phase-locking behavior of CA1 pyramidal
neurons in a computational model. We
started from the simplest spiking model, the
leaky integrate-and-fire (LIF), and found
that it responded to inputs similar to the
ones we presented to pyramidal cells with
low-pass action potential phase-locking
profiles, for high and low conductance, and
high and low firing rates. Moreover, for re-
duced sizes of membrane potential fluctua-
tions, the model responded with a phase-
locking peak at the firing frequency. This
behavior is consistent with the LIF receiving
white noise (Tateno, 2002) and the general-
ized integrate-and-fire (GIF), which incorporates a resonant vari-
able (Brunel et al., 2003). If the LIF or GIF were a good
representation of our observations, CA1 pyramidal neurons should
show firing-rate resonance. To test this, we recorded the phase lock-
ing to 4 Hz modulation frequency, in the presence of membrane
potential fluctuations, at different average firing rates. No locking
peak was present at an average firing rate of 4 spikes/s, under either
high or low conductance. In fact, the vector strength decreased with
increasing rate (low g, n � 5; high g, n � 6) (data not shown). We
therefore conclude that firing-rate resonance does not play a major
role in setting the spike phase locking under our recording
conditions.

Our experiments indicated that changes in gain, through changes
in spike frequency adaptation, in combination with an intrinsic fre-
quency preference were crucial for obtaining different phase-locking
profiles. To test this idea, we started from a previously published

model, which reproduced changes in gain and spike frequency adap-
tation in response to increases in conductance due to sodium current
inactivation (Fernandez and White, 2010). We adapted this model
by incorporating a resonant current; frequency modulation and
membrane potential fluctuations were introduced as before (see
Materials and Methods).

The model qualitatively reproduced the effects of changes in
background conductance and firing rate on the phase-locking
profiles of CA1 pyramidal neurons (Fig. 9). In fact, under low
conductance, increasing the firing rate changed the locking pro-
file from low pass to bandpass. Under high conductance, the
transition was more complex: at the lowest firing rates, the profile
was low pass, changing to bandpass—with peaks in the theta
range—for intermediate rates; at the highest rates tested, the
peaks broadened into plateaus. While the curves reported in Fig-
ure 9 qualitatively reproduce the behavior shown in Figure 1C,

Figure 8. Principal-component analysis of spike-triggering events at 8 spikes/s mean rate under control conditions, and at 2
(low g) and 1.5 (high g) spikes/s mean rate in the presence of 5 nM TTX. Ai, Spike-triggered averages of the input current for mean
firing rates of 8 spikes/s under low (black) and high (gray) conductance. Input currents used to measure spike-triggering events in
neurons did not include any frequency modulation. ii, Average first principal components of the spike-triggering events under low
(black) and high (gray) conductance at mean firing rates of 8 spikes/s. iii, Frequency preference index of the first principal
components under low (black) and high (gray) conductance. Tested modulation frequencies were as follows: 0.1, 0.5, 1, 2, 4, 8, 10,
20, 50, 100, and 500 Hz. Bi, Spike-triggered averages of the input current for mean firing rates of 2 (low g; black) and 1.5 (high g;
gray) spikes/s, in the presence of 5 nM TTX. Input currents used to measure spike-triggering events in neurons did not include any
frequency modulation. ii, Average first principal components of the spike-triggering events under low (black) and high (gray)
conductance in the presence of 5 nM TTX. iii, Frequency preference index of the first principal components under low (black) and
high (gray) conductance. Tested modulation frequencies were as follows: 0.1, 0.5, 1, 2, 4, 8, 10, 20, 50, 100, and 500 Hz.
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the firing rates of model and cells are not an exact match. In
addition, the apparent cutoff frequency for action potential phase
locking was at lower frequencies in the model when compared
with real neurons. However, the model reproduces the locking
profiles with very steep voltage dependencies for sodium current
inactivation, as well as activation and inactivation of the resonant
current. As we have observed before, this is necessary because the
changes in mean operating voltage with firing rate are much
smaller in the model than in CA1 pyramidal neurons (Fernandez
et al., 2011). Furthermore, having an artificial reset rule simpli-
fied the model at the expense of a full spike-generating mecha-
nism, and served to highlight the role of the sodium current in the
locking dynamics. Despite these discrepancies, our simulations
indicate that the different action potential phase-locking profiles
observed in CA1 pyramidal neurons can be qualitatively repro-
duced in a simple model incorporating spike frequency adapta-
tion and a resonant property.

Modulation amplitude attenuates with inhomogeneous
Poisson processes
Rhythmic activity is likely experienced as synaptic input rate vari-
ation by a recipient neuron. To investigate the phase-locking
profiles of CA1 pyramidal neurons in response to frequency
modulation via synaptic input rate oscillation, we changed our

experimental paradigm. In this series of
experiments, we modulated the rate of ei-
ther the excitatory or inhibitory Poisson
process using a cosine function. We re-
corded phase locking at average firing
rates of 2 spikes/s under low and high con-
ductance. Under all conditions, phase
locking was significantly affected by mod-
ulation frequency (excitation modulated:
low g, p � 0.001; high g, p � 0.01; both
one-way ANOVA, both n � 18; inhibition
modulated: low g, p � 0.001; high g, p �
0.001; both one-way ANOVA, both n �
8). For both excitation and inhibition, we
observed low-pass profiles under low g,
and weakly bandpass profiles under high
g. To directly compare the responses to
current-based cosines and rate modulated
synaptic events, we normalized profiles to
their value at 1 Hz (Fig. 10Ai,Aii). While
responses at low g were comparable, we
observed a drop in vector strength with
modulated inhibition at frequencies �10
Hz and a smaller peak at 4 Hz for both
modulated excitation and inhibition un-
der high g.

We hypothesized that these effects
could result from filtering of the input,
with the time constants of the synaptic-
like waveforms dampening the modula-
tion at higher cosine frequencies. This
attenuation would likely be different be-
tween the excitation-modulated and the
inhibition-modulated case, because of the
different �De and �Di. We quantified the
average current injected per cycle and
measured its amplitude (see Materials and
Methods). We found significant differ-
ences in the average current amplitude

for different frequencies in both the excitation-modulated and
the inhibition-modulated inputs (excitation: low g, p � 0.05;
high g, p � 0.001; n � 18; inhibition: low g, p � 0.01; high g, p �
0.001; n � 8; all one-way ANOVA). For both low- and high-
conductance recordings, the average current amplitude de-
creased with increasing modulation frequency. The dependence
on modulation frequency was greater for inhibition-modulated
inputs than for excitation-modulated inputs (data not shown).

To highlight the mechanism underlying the decreasing per-
cycle current amplitude with increasing modulation fre-
quency, we derived this average analytically (see Eq. 23,
Materials and Methods). The role the decay time constant
plays in shaping this function is shown in Figure 10 B: the
larger the �D, the steeper the decay of the modulation ampli-
tude with increasing frequency. Because the inhibitory decay
timescale is larger than the decay timescale of excitation, their
trends for the frequency dependence of the per-cycle current
amplitude are different. It should be noted that, for synaptic
time constants of �6 – 8 ms (commonly associated with
GABAA currents), the frequency-dependent attenuation was
already �40% at 20 Hz modulation.

Figure 9. Phase-locking profiles of CA1 pyramidal neurons can be qualitatively reproduced in a simple model incorporating
spike frequency adaptation and a resonant current. A, Example of simulated voltage traces under low (top trace) and high (bottom
trace) conductance, at mean rates of 1.5 spikes/s. B, Average spike–phase histogram in response to 8 Hz modulation at average
spike rates of 1.5 spikes/s. Low conductance is shown in black; high conductance is shown in gray. C, Vector strength versus
modulation frequency at a mean rate of 1.5 spikes/s under low (black) and high (gray) conductance. Model parameters were as
follows: low g, gL � 0.03 mS/cm 2, IDC ��0.098 �A/cm 2, IA � 0.018 �A/cm 2, gn � 0.04 �A/cm 2; high g, gL � 0.18 mS/cm 2,
IDC � 0.43 �A/cm 2, IA � 0.098 �A/cm 2, gn � 0.2 �A/cm 2. Tested modulation frequencies were as follows: 0.1, 0.5, 1, 2, 4, 8,
10, 20, and 100 Hz. D, Vector strength versus modulation frequency at a mean rate of 4 spikes/s under low (black) and high (gray)
conductance. Model parameters were as follows: low g, gL � 0.03 mS/cm 2, IDC � �0.058 �A/cm 2, IA � 0.018 �A/cm 2, gn �
0.04 �A/cm 2; high g, gL � 0.18 mS/cm 2, IDC � 0.68 �A/cm 2, IA � 0.098 �A/cm 2, gn � 0.2 �A/cm 2. Tested modulation
frequencies were as follows: 0.1, 0.5, 1, 2, 4, 8, 10, 20, and 100 Hz.
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Discussion
This study demonstrates that CA1 pyra-
midal neurons dynamically change their
frequency–response characteristics de-
pending on background conductance and
firing rate. We identify three main bio-
physical mechanisms underlying this phe-
nomenon: spike frequency adaptation,
the cutoff frequency of action potential
phase locking, and an intrinsic frequency
preference in the spike generation mech-
anism. We propose that these properties
of CA1 pyramidal neurons may enable
them to adjust the processing of time-
varying stimuli in response to global
changes in hippocampal activity.

Phase-locking profiles of CA1
pyramidal neurons
At low firing rates, increasing background
conductance changes the locking profile
from low pass to bandpass, peaking
within the theta range. Increasing firing
rate results in bandpass profiles, peaking
in the theta band under low conductance,
and in the beta– gamma band under high
conductance. Firing rate affects phase
locking mainly by altering the degree of
spike rate adaptation, which implements a
high-pass filter, as predicted by theoretical
studies (Benda and Herz, 2003; Benda et
al., 2010). While higher background con-
ductance increases the high-frequency
cutoff for action potential phase locking,
the intrinsic frequency preference of spike
generation has a more subtle effect,
changing the peak of the frequency–re-
sponse curve.

Implications for network function
Network oscillations of varying frequencies have been implicated in
a plethora of systemic functions in animals and humans, ranging
from sensory processing to memory formation (Engel et al., 2001;
Buzsáki, 2002; Buzsáki and Draguhn, 2004; Steriade, 2006; Andersen
et al., 2007). The overall network state translates into the drive, mag-
nitude of voltage fluctuations, and total synaptic conductance a neu-
ron will be exposed to (Destexhe et al., 2003; Destexhe and
Contreras, 2006). We show the dependence of action potential phase
locking on these parameters. In this context, our findings imply that
the ability of CA1 pyramidal neurons to participate in a network
rhythm of a given frequency depends on the overall network state.
Thus, CA1 pyramidal neurons should not be thought of as invariable
network elements, but rather as active units, able to modify their
behavior according to global changes in hippocampal activity.

This work focuses on postsynaptic properties exclusively. Other
network properties, including short- and long-term synaptic plastic-
ity, also play a role in network rhythmogenesis. For example, recent
theoretical work (Muller et al., 2011) shows that spike time-
dependent plasticity (STDP), a form of long-term synaptic plasticity
(Dan and Poo, 2004; Caporale and Dan, 2008), can induce syn-
chrony in a population of neurons in response to oscillatory inputs.
Cells with higher locking to a given input frequency will be more
effectively synchronized by this kind of STDP mechanism. Here, we

measure the spiking responses in relationship to oscillatory inputs
with different frequencies and show that pyramidal cells change their
locking preference depending on background conductance and fir-
ing rate. Given the dependence of STDP on neuromodulators and
the general network state, it would be interesting to investigate
whether the frequencies associated with higher locking as we
measure it correlate with those inducing stronger plasticity
across network conditions.

Evidence for the distinction of subthreshold and
suprathreshold regimes
For the last few decades, subthreshold properties of neurons have
been the subject of intensive investigation, under the natural,
implicit or explicit assumption that observations made in the
subthreshold regime are strongly predictive of neuronal spiking
responses, especially in the context of network oscillations
(Alonso and Llinás, 1989; McCormick and Pape, 1990; Llinás et
al., 1991; McCormick and Bal, 1997; Leung and Yu, 1998; Pike et
al., 2000; Hu et al., 2002; Narayanan and Johnston, 2007). Al-
though subthreshold properties can influence neuronal firing
properties and phase locking (Acker et al., 2003; Richardson et al.,
2003; Gutkin et al., 2005), our data show that spike phase locking
is not a simple reflection of the subthreshold impedance profile in
CA1 pyramidal neurons. We find that the spike cutoff frequency
is much greater than the cutoff of subthreshold membrane volt-
age, particularly in the high-conductance state. The cause for this
behavior, which has also been observed in other cell types (Könd-

Figure 10. Phase-locking of CA1 pyramidal neurons in response to rate-modulated Poisson processes driving artificial synaptic-
current waveforms at 2 spikes/s average firing rate. A, Normalized vector strength versus modulation frequency for modulated
excitation (red; 2 ms decay time constant), modulated inhibition (blue; 8 ms decay time constant), and modulation through current
cosines (black; same dataset shown in Fig. 1) under low (i) and high (ii) conductance. B, Dependence of the modulation amplitude
on the modulation frequency and the decay time constant of the artificial synaptic-current waveforms. i, Comparison of modula-
tion amplitudes derived from the same Poisson processes used in the experiments with amplitudes derived analytically. For
amplitudes derived numerically, the process driving the inhibitory artificial synaptic current waveforms was rate modulated with
an amplitude of 5% and the decay time constant was varied. Results for decay time constants of 8 (open blue squares) and 2 ms
(open red squares) are shown. Superposition of the analytical solution (black lines) shows a good agreement with the numerical
results. Note the steeper drop in amplitude with the larger decay time constant. ii, Normalized analytical amplitudes for a range of
decay time constants. Modulation amplitudes decreased with increasing modulation frequency. Attenuation for decay time con-
stants ranging from 1 to 10 ms are shown. Note the stronger decrease with higher decay time constants.
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gen et al., 2008; Higgs and Spain, 2009), remains unclear. Theo-
retical work (Fourcaud-Trocmé et al., 2003; Wei and Wolf, 2011)
suggests that the speed of spike initiation in combination with the
firing rate and the spectral composition of the input noise are
involved in setting the spike cutoff frequency. Furthermore, our
data demonstrate that increasing background conductance has
opposite effects on the subthreshold impedance and action po-
tential phase-locking profiles at low firing rates: increasing back-
ground conductance greatly reduced the subthreshold resonant
peak, while introducing a peak in the action potential locking
profile. A discrepancy between subthreshold and spiking regimes
has been observed before (Carandini et al., 1996; Brumberg and
Gutkin, 2007; Haas et al., 2007; Fernandez and White, 2008;
Kispersky et al., 2012), calling into question the general valid-
ity of predictions of the spiking regime based on subthreshold
observations.

Representing in vivo inputs
Accumulating evidence suggests that CA1 pyramidal neurons in
vivo experience periods of high membrane conductance associ-
ated with membrane voltage fluctuations (Penttonen et al., 1998;
Henze and Buzsáki, 2001; Destexhe et al., 2003; Harvey et al.,
2009; Epsztein et al., 2011). We introduced membrane voltage
fluctuations by injecting artificial synaptic waveforms driven by
Poisson processes: such inputs capture uncorrelated firing rates
of individual neurons observed in vivo (Softky and Koch, 1993).
However, this signal is still an imperfect representation of the
actual in vivo input: for example, excitation–inhibition correla-
tions (Okun and Lampl, 2008; Atallah and Scanziani, 2009; Gen-
tet et al., 2010), and the variability within synaptic waveforms are
not included. We found that introducing frequency modulation
in the rate of the Poisson processes resulted in the dependence of
its intensity on frequency. It can be expected that other more
complex stimulation paradigms will display some form of non-
uniform modulation strength across frequencies as well. To avoid
this confound, we introduced frequency modulation via inde-
pendent current-based cosine waveforms in the major part of this
study. Spiking responses to this simple input can be used to pre-
dict the locking profiles to more complex inputs, once the depen-
dence of their modulation strength on frequency is known.
Furthermore, we believe the basic effects of changes in back-
ground conductance and firing rate on the phase-locking behav-
ior can be observed more readily using this form of modulation.
In the work presented here, we chose to simulate the high-
conductance state by introducing a linear leak conductance in-
stead of using conductance-based synaptic events. In preceding
experiments, we found no obvious difference in phase-locking
behavior between the two paradigms. We found a strong influ-
ence of firing rate on phase locking in our dataset, highlighting
the importance of controlling this parameter.

Contribution of sodium current inactivation to adaptation
and phase locking
Previous work has emphasized the contribution of M-type and
Ca 2�-activated potassium currents to spike frequency adapta-
tion in CA1 pyramidal neurons (Madison and Nicoll, 1984; Ped-
arzani and Storm, 1993; Aiken et al., 1995; Peters et al., 2005; Otto
et al., 2006). Although a contribution of these conductances can-
not be ruled out, we are able to show that a reduction in sodium
current availability can account for most of the effects of spike
frequency adaptation on locking profiles.

The degree of spike frequency adaptation sets the gain of the
input– output function of CA1 pyramidal neurons (Fernandez

and White, 2010; Fernandez et al., 2011), and cumulative sodium
current inactivation strongly affects adaptation in CA1 pyramidal
neurons. For low to medium modulation frequencies, we relate
gain to vector strength and show that the local linearization of the
f–I relationship predicts the responses to time-varying stimuli.
Moreover, reducing sodium current availability through TTX
selectively reduces locking to low modulation frequencies. To-
gether, this makes a strong argument for the role of sodium cur-
rent inactivation in phase locking of CA1 pyramidal neurons.
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